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We investigate thermal conduction described by Newton’s law of cooling and by Fourier’s transport equation
and chemical reactions based on mass action kinetics where we detail a simple example of a reaction mech-
anism with one intermediate. In these cases we derive exact expressions for the entropy production rate
and its differential. We show that at a stationary state the entropy production rate is an extremum if and only
if the stationary state is a state of thermodynamic equilibrium. These results are exact and independent of
any expansions of the entropy production rate. In the case of thermal conduction we compare our exact
approach with the conventional approach based on the expansion of the entropy production rate near equilib-
rium. If we expand the entropy production rate in a series and keep terms up to the third order in the devia-
tion variables and then differentiate, we find out that the entropy production rate is not an extremum at a
nonequilibrium steady state. If there is a strict proportionality between fluxes and forces, then the en-
tropy production rate is an extremum at the stationary state even if the stationary state is far away from
equilibrium.

I. Introduction

The entropy production rate in an irreversible process is a
measure of the dissipation in that process.1 A popular ‘principle’
in the literature is that if a stationary state is close enough to
equilibrium, then the entropy production rate has an extremum
at the steady state.1 This ‘principle’ is mathematically correct
if the relation between the thermodynamic fluxes and forces is
strictly linear and the matrix of proportionality coefficients is
symmetric2 (“Stationary non-equilibrium states have the im-
portant property that, under certain conditions, they are char-
acterized by aminimum of the entropy production, compatible
with the external constraint imposed on the system. This
property is valid only if the phenomenological coefficients are
supposed to beconstants”.2). Later on, Glansdorff and Prigogine3

restated the theorem with the thought that close to equilibrium
the proportionality between fluxes and forces becomes nearly
true (“It is easy to show that if the steady states occursufficiently
close to equilibrium states they may be characterized by an
extremum principle according to whichthe entropy production
has its minimum value at the steady-state compatible with the
prescribed conditions (constraints) to be specified in each
case.”3). Unfortunately this incorrect statement has been repeated
many times, especially in connection with biochemical and
biological applications. There is a tendency, especially in
biochemistry and biology, to present the principle of minimum
entropy production in even vaguer terms, as a fundamental law
of nature, which is supposed to be valid for any evolution
equations, which is not correct. For example, Voet and Voet,4

in a widely used text, mention that “Ilya Prigogine, a pioneer
in the development of irreversible thermodynamics, has shown
that a steady state produces the maximum amount of useful work
for a given energy expenditure under the prevailing conditions.

The steady state of an open system is therefore its state of
maximum thermodynamic efficiency.”

In earlier work5 we presented a critique of the restated
version3 of the principle of minimum entropy production rate.
The principle was shown to be based on a mathematical error5

due to the unrecognized noncommutativity of two operations:
1. the differentiation of the entropy production rate to obtain
an extremum and 2. the approach close to equilibrium. If 2. is
done first, as in ref 5, then the principle is obtained; if 1. is
done first then the principle is false. This critique was contested
in ref 6 but this work was shown to be without merit.7

Nonetheless references to this principle appear regularly, the
original critique being unknown or neglected.

In this paper we go a step further: instead of using approx-
imations based on series expansions, we present exact solutions
of the entropy production rate for two empirical laws of thermal
conduction and for chemical reactions obeying mass action
kinetics. In the case of thermal conduction with Newton’s law
of cooling, we show, without any approximations, that the en-
tropy production rate in a stationary state is never an extremum,
whether that state is far from, or close to, equilibrium; an
extremum occurs if and only if the stationary state is a state of
thermodynamic equilibrium. This result is extended for non-
uniform systems, described by Fourier’s transport equation.

We also study the connections between the exact method
introduced in this paper and the expansion approach. We expand
the entropy production rate in variables that are small for
systems close to equilibrium. If we first differentiate the entropy
production rate and then keep only the lowest order terms in
those variables, then the extremum is not at the stationary state,
regardless of how close the system is to equilibrium. If, however,
we keep in the entropy production only the lowest terms in these
variables, all square terms, and subsequently differentiate, then
the extremum is at the stationary state for given constraints. At
equilibrium, of course, the entropy production rate vanishes and
is an extremum. If and only if there is a strict proportionality
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between fluxes and forces, then, and only then, the entropy
production rate is an extremum at the stationary state. This
requirement does not hold in general for transport processes or
chemical kinetics without making approximations. We provide
two examples of thermal conduction for which such propor-
tionality is assumed to hold.

We also consider a general formulation of chemical reaction
rates based on mass action kinetics. We write the entropy
production rate and evaluate its differential. The differential of
the entropy production rate is made up of two additive terms:
the first term is always zero for a steady state, whereas the
second term is in general different from zero. For an example
we take a reaction mechanism with a single intermediate and
show that the entropy production rate at the single stationary
state of this system is never an extremum, except at chemical
equilibrium.

II. Exact Solutions for Thermal Conduction

A. Newton’s Cooling Law. We consider an example of
thermal conduction, which we shall analyze exactly, without
approximations. We consider a macroscopic, homogeneous
system, with cylindrical shape of lengthl and cross-sectional
areaA, at temperatureT, which generally is time-dependent.
The system is in interaction with two thermal baths which are
maintained at two different constant temperatures,T1 and T2,
respectively; we assume, without restriction, thatT1 > T2. The
entropy production rate is

Here the heat flux isJ ) k∆T/l ) εAlFc∆T, the conjugated
force is ∆(T - 1)/l, k is the thermal conductivity,c is the
mass specific heat capacity of the system, which is assumed
to be constant,F is the density of the system, which is also
assumed to be constant, andε ) k/(FcAl2) is the rate of
temperature decay. Note that the flux is not proportional to the
force. The transport equation of the process is a combination
of two Newton’s laws, which describe the interaction with the
two thermal baths

The solution of eq 2 is

where the relaxation rate is 2ε ) 2k/(FcAl2) and Tst ) (T1 +
T2)/2. For long times,t > > 1/(2ε), the system reaches a
stationary state for which

The derivative of the entropy production rate with respect to
temperature is given by

and at the steady state (T ) Tst) we have

Thus the entropy production rate is never an extremum at the
stationary state, neither close to nor far from equilibrium; it is
an extremum at a stationary state if and only if the system is at
equilibrium, atT1 ) T2. The entropy production rate has an
extremum, which is a minimum, forTextr ) xT1T2. SinceTst -
Textr ) (xT1 - xT2)

2/2 > 0, T1 * T2, it follows the extremal
temperatureTextr is lower than the stationary temperatureTst.

We notice that the dimensionless ratio

is positive for any nonequilibrium steady state (T1 * T2). At
equilibrium (T1 ) T2 ) Teq) this ratio is zero

B. Fourier Equation. By extending Newton’s cooling law
to a continuous distribution of temperatures we obtain Fourier’s
law of heat conduction. The heat flux is given byJ ) - k∇T
and the corresponding to thermodynamic force is∇T -1; once
again, the flux is not proportional to the force. By inserting the
flux J ) - k∇T into the balance equationFc(∂T/∂t) + ∇‚J )
0 we obtain the Fourier law

whereλ ) k/Fc is the thermal diffusivity. Fourier’s law is the
continuous analogue of the Newton’s cooling law. A simple
constraint which leads to the evolution of the system toward a
nonequilibrium steady state is to impose a constant heat flux
on the systemJ ) J0, constant. The stationary distribution of
temperatureTst(r ) can be obtained by solving the equation

with suitable boundary conditions. In particular, for unlimited
space

where T0(r0) is the stationary temperature at the reference
positionr0. ForJ0 ) 0 there are no constraints, and the system
evolves toward a state of thermodynamic equilibrium character-
ized by a uniform temperatureTeq ) T0, constant. Otherwise,
for a nonequilibrium steady state at least one of the components
of the flux J0 ) 0 is different from zero,|J0| > 0 and the
stationary temperature varies with position.

The entropy production rate for the whole system,σ[T(r )],
which is a functional of the temparature fieldT(r ), is given by

To check if the entropy production rate has an extremum for
the stationary state corresponding to a constant heat fluxJ0 we
evaluate its functional derivative with respect to the temperature
field:

σ ) Alk.
T1 - T

l
‚1
l (1

T
- 1

T1
) + Alk.

T2 - T

l
‚1
l (1

T
- 1

T2
) )

kA
TT1T2l

[T2(T1 + T2) - 4T1T2T + T1T2(T1 + T2)] g 0 (1)

lAFc
dT
dt

) k(T1 - T

l ) + k(T2 - T

l ) (2)

T(t) ) Tst + [T0 - Tst] exp[-2εt] (3)

lim
tf∞

T ) Tst ) (T1 + T2)/2 (4)

d
dT

σ(T) )
Ak(T2 - T1T2)(T1 + T2)

lT2T1T2

(5)

σ(Tst) ) Ak(T1 - T2)
2/2lT1T2 (6)

d
dT

σ(Tst) )
Ak(T1 - T2)

2

lT1T2(T1 + T2)
(7)

[ σ(T)/T

dσ(T)/dT]
T)Tst

) 1 > 0 (8)

[ σ(T)/T

dσ(T)/dT]
T)Teq

) [T - Teq

T + Teq
]

T)Teq

) 0, for T1 ) T2 ) Teq

(9)

∂T/∂t ) λ∇2T (10)

J0 ) -k∇Tst(r ) (11)

Tst(r ) ) T0(r0) - J0‚(r - r0)/k (12)

σ[T(r )] ) ∫J‚∇T-1dr ) k∫[∇T(r )]2

[T(r )]2
dr g 0 (13)

10608 J. Phys. Chem. A, Vol. 109, No. 46, 2005 Ross and Vlad



For a stationary state∂Tst(r )/∂t ) 0 and the Fourier eq 9
reduces to a Laplace equation

We insert the stationarity condition 11 into eqs 13 and 14 and
use the Laplace eq 15, resulting in

and

that is, the entropy production rate for the whole system is an
extremum if and only if the stationary state is a state of
thermodynamic equilibrium.

In conclusion, in this section we have shown that for a thermal
conduction law described by Newton’s cooling law the entropy
production rate is an extremum if and only if the system is at
thermodynamic equilibrium. This conclusion can be easily
extended to space-dependent systems, described by Fourier’s
equation. These results are exact and not based on any series
expansions. Nevertheless, the study of the connections between
the exact method and the expansion approach will clarify the
physical meaning of our conclusions. For details, see section
IV.

III. Chemical Reactions

We consider a general network of elementary reactions which
obey ideal mass-action law kinetics

where the forward and backward extensive reaction rates are
given by

HereAu,u ) 1,...,Sa are stable species whose concentrationsau,u
) 1,...,Sa are kept constant by interaction with a set of reservoirs
connected to the system, which act as buffers, andXu,u ) 1,...,Sx

are reaction intermediates with variable concentrationsxu,u )
1,...,Sx andV is the volume of the system. The system can be
kept away from equilibrium by controlling the concentrations
au,u ) 1,...,Sa of the stable speciesAu,u ) 1,...,Sa.

The entropy production rate can be expressed in the following
form (see Appendix A)

wherekB is Boltzmann’s constant. We notice that the entropy
production rate does not depend directly on time, only on
concentrations. The differential ofσ(a,x) can be easily evaluated
by using the expression 19 for the forward and backward rates
of the reaction 18. After some computations we come to

where r̃u(a,x) are the net reaction rates of the speciesXu,u )
1,...,Sx

and

Notice that for a steady statex ) xst the net reaction rates of
the active speciesXu,u ) 1,...,Sx are equal to zero r˜u(a,xst) )
0,u ) 1,...,Sx, and the sum∑ur̃u(a,x)δlnxu in eq 21 is equal to
zero. The second sum,∑uB(a,x)δ ln xu, however, is in general
different from zero; as expected, it is zero at thermodynamic
equilibrium, where detailed balance (rw

+ (a,x) ) rw
- (a,x))

holds.
For reaction systems of the type

where all reaction rates are identicalk1
( ) k2

( ) k it is easy to
show that the term∑uBu(a,x)δ ln xu is zero if and only if the
system is at thermodynamic equilibrium. This counterexample
is sufficient for invalidating the minimum entropy production
rate principle. There is a single physically significant stationary
state for which

For a * b the stationary state is a nonequilibrium state, and for
a ) b ) xst the stationary state is a state of thermodynamic
equilibrium. The variation of the entropy production rate at the
steady statex ) xst is given by

From the algebraic inequality

it follows that

and thus the entropy production rate has an extremum if and

δσ(a,x) ) ∑
u)1

Sx

δ ln xu

∂

∂ ln xu

σ(a,x) ) ∑
u)1

Sx

r̃u(a,x)δ ln xu +

∑
u)1

Sx

Bu(a,x)δ ln xu (21)

r̃u(a,x) ) ∑
w)1

R

[rw
+ (a,x) - rw

- (a,x)](âuw
+ - âuw

- ) (22)

Bu(a,x) ) ∑
w)1

R

[âuw
+ rw

+ (a,x) - âuw
- rw

- (a,x)]ln[rw
+ (a,x)

rw
- (a,x)] (23)

νA h Xν, νX h νB (24)

x ) xst ) {1
2
[(a)ν + (b)ν]}1/ν

(25)

δσ(a,b,xst) ) (δ ln xst)VkBνk
1
2
[(a)ν + (b)ν]ln([(a)ν + (b)ν]2

4aνbν )
(26)

[(a)ν + (b)ν]2

4aνbν
) {1 for a ) b

> 1 for a * b
(27)

δσ(a,b,xst)

δ ln xst
) {0 for a ) b

> 0 for a * b
(28)

δ
δT(r ′)

σ[T(r )] ) 2k∫[( 1
T(r )

(∇rδ(r - r ′))‚(∇ln T(r )) -

δ(r - r ′)
T(r )

(∇ ln T(r ))2)]dr ) 2k[(∇T(r ′))2

(T(r ′))3
-

∇2T(r ′)
(T(r ′))2] (14)

∇2Tst(r ) ) 0 (15)

σ[Tst(r )]|st )
|J0|2

k ∫ dr

[Tst(r )]2
) {) 0 if |J0| ) 0

> 0 if |J0| > 0 (16)

δ
δT(r ′)

σ[T(r )]|st )
2|J0|2

k(Tst(r ′))3
) {) 0 if |J0| ) 0

> 0 if |J0| > 0 (17)

∑
u)1

Sa

Ruw
+ Au + ∑

u)1

Sx

âuw
+ Xu h ∑

u)1

Sa

Ruw
- Au + ∑

u)1

Sx

âuw
- Xu (18)

rw
((a,x) ) Vkw

([∏
u)1

Sa

(au)
Ruw

(
][∏

u)1

Sx

(xu)
âuw

(
] (19)

σ(a,x) ) kB∑
w)1

R

[rw
+ (a,x) - rw

- (a,x)]ln[rw
+ (a,x)

rw
- (a,x)] g 0 (20)
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only if the system is at thermodynamic equilibrium. For
nonequilibrium steady states, no matter how close to equilib-
rium, the entropy production rate does not have an extremum.

IV. Connections with Prior Work

In this section we try to make a connection between our exact
approach and prior work based on the use of expansions and
approximations. We also consider alternative models derived
from linear nonequilibrium thermodynamics. For simplicity we
only study thermal conduction

A. Expansions and Approximations. Now we consider
again the discrete problem of thermal conduction studied in
section II.A but make approximations; when and where the
approximations are made is crucial.

We introduce two new variables

where δ is a measure of the deviation of the system from
equilibrium, and δT is a measure of the deviation of the
temperatureT from the steady-state valueTst. If the entropy
production rate is a quadratic function inδT, we expect that it
is an extremum at the steady state. However, we start by
considering a higher-order approximation forσ, say, up to cubic
terms

and differentiate with respect toδT we obtain

which at the stationary state, (δT)st ) δ/2, is

and definitely not zero.
The ratio

is not zero, regardless of how close the system is to equilibrium.
On the other hand, if the temperatures of the two thermal

baths are identical, we haveT1 ) T2 ) Teq, δ ) 0, and the
system tends toward thermodynamic equilibrium for whichδT

) (δT)eq ) 0 and{σ(δT)/[dσ(δT)/dδT]}δT)0 ) 0, a result which
is consistent with eq 9.

If we approach conditions close to equilibrium, that is
keep only square terms inδ andδT, then the entropy production
rate is

which upon differentiation with respect toδT leads to

If we neglect the termsO[(δT)2] in eq 35 (O[(δT)3] in
eq 34), it follows that the entropy production rate has an
extremum at

that is at the stationary state, in contradiction to the exact
solution, eq 7, in section II.A.

The error which leads to the invalid principle of minimum
entropy production rate comes from first approximating the
entropy production rate to lowest order in deviation from
equilibrium and then differentiating to find an extremum, instead
of the reverse procedure. The reverse procedure leads to the
same result as that obtained from the exact solution, that is
without any approximations or expansions.

B. Alternative Model To Newton Cooling. We stated in
the Introduction that if there is a strict proportionality between
a flux and a force, then the entropy production rate is an
extremum at the stationary state. As an illustration of this point
consider another example of thermal conduction carried out as
discussed in section II.A. Now we assume the validity of linear
nonequilibrium thermodynamics, that is, the heat fluxJ is
proportional to the conjugated force∆(T -1)/l

whereø is a phenomenological coefficient. The entropy produc-
tion rate is

We differentiate eq 37, resulting in

and thus the entropy production rate has a minimum for

Although we assume the validity of linear nonequilibrium
thermodynamics, the evolution equation for the temperature is
nonlinear

Eq 41 is a nonlinear equation which can be solved analytically.
Its solution can be represented in an implicit form

where

is an effective decay rate. From eq 42 it follows that for large
times,t . 1/λ, the temperature tends toward a stationary value
Tst which is the same as the extremum temperatureTextr

T1 ) T2(1 + δ), T ) T2(1 + δT) (29)

σ ) Ak
l

‚
δ2 - 2δδT + (2 + δ)(δT)

2

(1 + δ)(1 + δT)
) Ak

l
[δ2 - 2δδT +

2(δT)
2 - δ3 + δ2δT + δ(δT)

2 - 2(δT)
3] + O[(δT)

4] (30)

∂

∂δT
σ ) Ak

l
[-2δ + 4δT + δ2 + 2δδT - 6(δT)

2] + O[(δT)
3]

(31)

∂

∂δT
σ((δT)st) ) kA

2l
δ2 + O[(δ)3] (32)

[ σ(δT)

dσ(δT)/dδT
]

δT)(δT)
st

) 1 > 0 (33)

σ ) kA
l

[δ2 - 2δδT + 2(δT)
2] + O[(δT)

3] (34)

∂

∂δT
σ ) 2kA

l
[2δT - δ] + O[(δT)

2] (35)

(δT)extr ) δ/2, orTextr ) Tst ) (T1 + T2)/2 (36)

J ) ø∆(T-1)/l (37)

σ ) Alø[1l (1
T

- 1
T1

)]2
+ Alø[1l (1

T
- 1

T2
)]2

) (38)

dσ
dT

) - 4Aø
lT2 [1

T
- 1

2( 1
T1

+ 1
T2

)] (39)

Textr )
2T1T2

T1 + T2
(40)

lAFc
dT
dt

) ø
l (1

T
- 1

T1
) + ø

l (1
T

- 1
T2

) (41)

T(t) ) Textr + [T0 - Textr] exp(-
T(t) - T0

Textr
) exp[-λt] (42)

λ ) 2ø/(l2AFc(Textr)
2) (43)

lim
tf∞

T ) Tst ) Textr )
2T1T2

T1 + T2
(44)
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Due to the proportionality of the flux to the force there are
only ‘square terms’ in∆T -1/l in the entropy production rate
and at the stationary state the entropy production rate is an
extremum. In, and only in, such cases the principle of minimum
entropy production rate holds.

C. Alternative Model to Fourier Conduction. The alterna-
tive model of discrete heat transport can be easily extended to
continuous (Fourier type) transport. According to linear non-
equilibrium thermodynamics, we assume strict proportionality
between the heat flux vectorJ and the corresponding to
thermodynamic force∇T -1; we have

and the Fourier law (10) is replaced by

whereú ) ø/Fc is a nonlinear temperature diffusion coefficient
with dimension [length]2[temp.]2[time]-1. Similar to the linear
Fourier model, a constraint which leads to the evolution of the
system toward a nonequilibrium steady state is to impose a
constant heat flux on the systemJ ) J0 constant. The stationary
distribution of temperatureTst(r ) can be obtained by solving
the equation similar to eq 11

with suitable boundary conditions. For unlimited space,

where T0(r0) is the stationary temperature at the reference
position r0. If J0 ) 0 there are no constraints, and the system
evolves toward a stare of thermodynamic equilibrium character-
ized by a uniform temperatureTeq ) T0 constant. For a
nonequilibrium steady state|J0| > 0 and the stationary tem-
perature varies with position.

The entropy production rate for the whole system,σ[T(r )],
and its functional derivative with respect to the temperature field
are equal to

and

For a stationary state we have∂Tst(r)/∂t ) 0, and the stationary
temperature fieldTst(r ) is the solution of a modified Laplace
equation

By combining eqs 49-51 we obtain

and

That is, for a stationary system obeying linear nonequilibrium
thermodynamics for any value of the temperature field the
entropy production rate is an extremum no matter how far the
stationary state is from equilibrium. We also notice that a linear
nonequilibrium thermodynamic relation between fluxes and
forces leads (eq 45) leads to a nonlinear transport equation (eq
46).

V. Conclusions

In this paper we presented two exactly solvable counterex-
amples, which show that the entropy production rate does not
have an extremum for a steady state, not even in the vicinity of
thermodynamic equilibrium. These examples are complementary
to and extend our initial critique of the theorem of minimum
entropy production rate.5,7 The theorem of minimum entropy
production rate is an artifact produced by ignoring the non-
commutativity of two different operations, the truncation of a
Taylor series for the entropy production rate in terms of a set
of parameters which express the distance from equilibrium and
the differentiation of entropy production rate in search for an
extremum.

In the literature the theorem of minimum entropy production
rate is frequently presented as a fundamental law of nature with
a deep meaning, even in recent textbooks of biochemistry and
molecular biology.4 Our analysis shows that this is incorrect.
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Appendix A

We use the extentsêw, w ) 1,2,... of reaction 17 as progress
variables. We have

wheredNXu is the total variation of the number of molecules
Xu. The affinity of the reactionu is given by

whereKw
eq, w ) 1,2,... the equilibrium constants of reaction 17

are equal to

where au
eq and xu

eq are the equilibrium concentrations of the
speciesAu andXu, respectively. We insert eq A.3 into eq A.2
and use eq 18; we obtain

J ) ø∇T-1 (45)

∂T/∂t ) -ú∇2(T-1) ) úT-3[T∇2T - 2(∇T)2] (46)

J0 ) -ø∇(Tst(r ))-1 (47)

Tst(r ) )
øT0(r0)

ø - T0(r0)J0‚(r - r0)
(48)

σ[T(r )] ) ø ∫[∇T-1(r )]2dr ) ø ∫[∇T(r )]2

[T(r )]4
dr g 0 (49)

δ
δT(r ′)

σ[T(r )] ) -2ø ∫dr ′′
δ(r ′′ - r ′)
[T(r ′′)]2 ∫(∇rδ(r ′′ - r ))‚

(∇T-1(r ′′))dr )
2ø∇2T-1(r ′)

[T(r ′)]2
(50)

∇2[Tst(r )]-1 ) 0 (51)

σ[Tst(r )]|st )
|J0|2

ø ∫ dr

[Tst(r )]4
(52)

δ
δTst(r ′)

σ[Tst(r )]|st ) 0, for any|J0| (53)

dNXu
) ∑

u

(âuw
- - âuw

+ )dêw (A.1)

Aw ) -
∂

∂êw

G )

kBT ln[ 1

Kw
eq

[∏
u)1

Sa

(au)
Ruw

+-Ruw
-
][∏

u)1

Sx

(xu)
âuw

+-âuw
-
]] (A.2)

Kw
eq ) [∏

u)1

Sa

(au
eq)Ruw

+-Ruw
-
][∏

u)1

Sx

(xu
eq)âuw

+-âuw
-
] )

kw
+

kw
-

(A.3)

Aw ) kBT ln[rw
+ (a,x)/rw

-(a,x)] (A.4)

Entropy Production Rate J. Phys. Chem. A, Vol. 109, No. 46, 200510611



The entropy production rateσ(a,x) for the reaction system
can be expressed in terms of the reaction rates

and of the reaction affinitiesAw. We have

We insert eq A.4 and eq A.5 into eq A.6, resulting in eq 19.
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dêw/dt ) rw
+ (a,x) - rw

+ (a,x) (A.5)

σ(a,x) )
1

T
∑
w

Aw

d

dt
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